

Battery Protection Switch for 48 V

Preliminary Technical Datasheet B-samples

Revision 2.0 – October 12th, 2021

Battery Protection Switch

Description

Ultra-compact bidirectional solid state battery switch for disconnection of automotive 48V battery packages, designed as a replacement of conventional mechanic relays. Switch is able to protect battery circuitry from both sides during charging and discharging from overcharging or shorts. Low ohmic MOSFETs are attached on bulk aluminium substrates - by use of patented Anotherm aluminium substrates technology. Aluminium metal substrates act as high current carrying busbars and heat conductors simultaneously. This allows efficient cooling over busbar connection and baseplate. Customer specific designs, deviating from standard module (scalable Rdson, sensor integration, layout and dimensions) are possible.

Key features:

- Integration of 6x 80 V MOSFETs (2 x 3 in antiserial configuration for bidirectional switching capability)
- > Top side of MOSFETs wirebonded
- > Integrated temperature sensors and gate resistors
- Interface pins for voltage measurement

Module characteristics, configuration without molding

Absolute maximum ratings				
Parameter	Conditions	Symbol	Value	Unit
Drain-source Voltage	$V_{GS} = 0 V$	V _{DS}	80	V
Gate-source Voltage		V _{GS}	0+18	V
Operating Junction Temperature		TJ	-55 to +175	°C

Electrical characteristics

			min.	typ.	max.	
Static Terminal-Terminal on resistance, with 2 x 3 MOSFETs (customer adaptation possible)	V _{GS} = 10 V, I _D = 300 A, T _{amb} = 25 °C	R _{DS,on,T-T}	-	0.5	1.0	mΩ
Gate threshold voltage	V _{DS} = V _{GS} , I _D = 100 mA	$V_{GS(TH)}$	3	3.2	3.5	V
Total gate charge per chip	V _{DD} = 100 V, I _D = 100 A, V _{GS} = 10 V	Q_{G}		425	550	nC
Stray inductance module (Terminal- Terminal)		L_{σ}		12		nH
NTC-Thermistor rated resistance	T _c = 25 °C	R ₂₅		10000		Ω
NTC-Thermistor resistance tolerance	T _c = 25 °C	R ₂₅ -Tol.		± 1		%
NTC-Thermistor power dissipation	T _c = 25 °C	$P_{diss-NTC}$			125	mW
NTC-Thermistor type	Vishay NTCS0603E3103FMT					

© All rights reserved for KYOCERA AVX Components (Salzburg) GmbH, also in case of applications for intellectual property protection (IPR) No part of this document or any of its contents may be reproduced, copied, modified or adapted, without written consent of the author, unless otherwise indicated for stand-alone materials

PRELIMINARY TECHNICAL DATASHEET

Thermal characteristics (simulated with 6SigmaET)

Thermal resistance, junction to water ¹	single side cooling, TIM	R_{thJW}	0.11	K/W	
--	-----------------------------	------------	------	-----	--

Thermal/electrical characterization (simulated with 6SigmaET)

Current	Tjmax	Time	Baseplate/ambient T
[A]	[°C]	[sec]	[°C]
75	55	cont.	55
147	119	300	118
209	117	60	116
250	83	10	81

 Table 1: Simulated thermal / electrical performance. Experimental test confirmation will be shared later.

For more information, please contact KYOCERA AVX Components (Salzburg) GmbH.

	Module			
Parameter	Conditions	Symbol	Value	Unit
Material of module substrates			Aluminium	
Clearance	Terminal to terminal	$d_{clearance}$	2	mm
Creepage distance			2	mm
Terminal connection torque	Screw M6	М	5	Nm
Weight			43,0	g

[©] All rights reserved for KYOCERA AVX Components (Salzburg) GmbH, also in case of applications for intellectual property protection (IPR) No part of this document or any of its contents may be reproduced, copied, modified or adapted, without written consent of the author, unless otherwise indicated for stand-alone materials

PRELIMINARY TECHNICAL DATASHEET

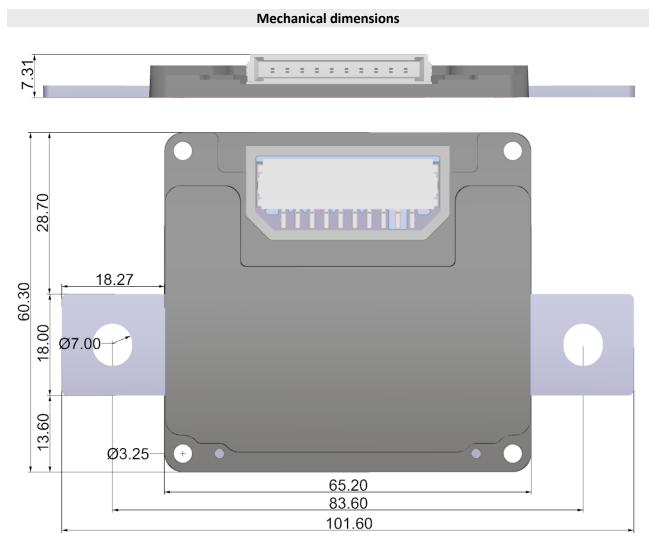


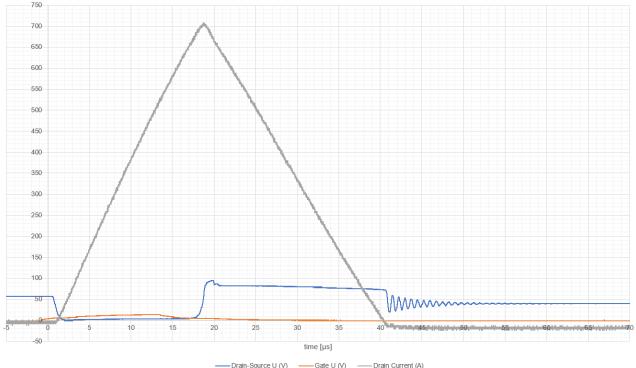
Figure 1 Mechanical dimensions of molded battery switch

© All rights reserved for KYOCERA AVX Components (Salzburg) GmbH, also in case of applications for intellectual property protection (IPR) No part of this document or any of its contents may be reproduced, copied, modified or adapted, without written consent of the author, unless otherwise indicated for stand-alone materials

Circuit diagram Busbar T4 i∎ ¥ T6 72 • R2 33R D2 18V/2.00% R6 4M7 X1 515253 2 3 4 5 18 01 18/2.00% 6 7 R5 4M7 8 9 10 **R1** 33R MEC NTC1 5 ш 5 Ե 1 10k NTC Busbar

Figure 2 Circuit diagram

Pin Number	Symbol	I/O	Function	
Drain 1 / Busbar	I _{AC,T1}	Input/output	Bidirectional current Terminal 1 (Bat +)	
Drain 2 / Busbar	I _{AC,T2}	Input/output	Bidirectional current Terminal 2 (Load)	
X1-1	V _{DS,T1}	Output	Drain 1, voltage sense connection	
X1-2	Vs	Output	Source potential	
X1-3	T _{1,1}	Output	NTC1 thermistor sensor lead 1	
X1-4	T _{1,2}	Output	NTC1 thermistor sensor lead 2	
X1-5	V _{G+,T1}	Input	Gate input plus Terminal 1	
X1-6	V _{G+,T2}	Input	Gate input plus Terminal 2	
X1-7	T _{2,1}	Output	NTC2 thermistor sensor lead 1	
X1-8	T _{2,2}	Output	NTC2 thermistor sensor lead 2	
X1-9	n.c.	n.c.	Not connected	
X1-10	V _{DS,T2}	Output	Drain 2, voltage sense connection	
Table 2: Din description				


Table 2: Pin description

© All rights reserved for KYOCERA AVX Components (Salzburg) GmbH, also in case of applications for intellectual property protection (IPR) No part of this document or any of its contents may be reproduced, copied, modified or adapted, without written consent of the author, unless otherwise indicated for stand-alone materials

Short Circuit Condition

Due to increased E/E requirements and increased integration of additional safety-relevant features in the electrical supply architecture of a vehicle, a semiconductor-based solution can offer significant advantages over a mechanical relay, especially since a higher switching speed is possible. Especially in the event of a short circuit, every microsecond counts here to ensure that the battery is disconnected safely. The main switch protects the supply circuit of a 48 V battery bidirectionally during charging and discharging in the event of overcharging or a short circuit. It is exactly for these two faults that a "thermal runaway" of the battery must be prevented under all circumstances.

Example of typical short circuit condition:

(t = 15 µs / U = 56 V)

High power TVS-Diodes were used in a protective circuit.

For more information, please contact KYOCERA AVX Components (Salzburg) GmbH.

© All rights reserved for KYOCERA AVX Components (Salzburg) GmbH, also in case of applications for intellectual property protection (IPR) No part of this document or any of its contents may be reproduced, copied, modified or adapted, without written consent of the author, unless otherwise indicated for stand-alone materials